## The Effect of Coumarin Derivatives on Organogenesis and Callus Growth of Cichorium Intybus Roots and Helianthus tuberosus Tubers in vitro

Coumarins are widely distributed in the plant kingdom, even if they are especially common in the Compositae, Umbelliferae and Rutaceae. These compounds have quite different physiological effects: in some cases they act as inhibitors of plant growth and seed germination, and sometimes as stimulators.

Until now the effects of inhibition or stimulation of growth were observed only on the extension of epicotyls, hypocotyls and coleoptiles of different plants<sup>2-4</sup> and on elongation of roots<sup>5,6</sup>. There are very few reports, and only for the parent compound <sup>7,8</sup>, on the action of natural coumarins on callogenesis of plants tissues cultivated in vitro.

For this reason, we thought it would be interesting to investigate the effect of coumarins on cellular division and organogenesis of plant tissues grown in vitro, in view of the study of possible relationship between chemical structure and activity of coumarins and its derivatives.

Materials and methods. Explants of Cichorium intybus (chicory) roots and dormant tubers of Helianthus tuberosus (Jerusalem artichoke) var. OB1, were utilized. Prismatic chicory explants (1.5 cm height) were placed in vitro as previously described. Cylindrical explants (9 mm diam., 1 cm height) of an homogeneous medullary

- <sup>1</sup> A. M. Mayer and A. Poljakoff-Mayber, in *Plant Growth Regulation* (Iowa State University Press, Ames, Iowa USA 1961), p. 735.
- <sup>2</sup> J. NEUMANN, Science 129, 1675 (1959).
- <sup>8</sup> J. NEUMANN, Physiologia Pl. 13, 328 (1960).
- <sup>4</sup> J. P. Nitsch and C. Nitsch, Bull. Soc. Bot. Fr. 108, 349 (1961).
- <sup>5</sup> R. H. Goodwin and C. Taves, Am. J. Bot. 37, 224 (1950).
- <sup>6</sup> M. POLLOCK, R. H. GOODWIN and S. GREENE, Am. J. Bot. 41, 521 (1954).
- <sup>7</sup> G. Duplessy-Graillot, C. r. Soc. Biol. 156, 1064 (1962).
- <sup>8</sup> G. Duplessy-Graillot, C. r. Soc. Biol. 156, 1263 (1962).
- 9 N. Bagni and D. Serafini Fracassini, Experientia 22, 292 (1966).

Table I. Effect of different coumarins (CM) on growth of Helianthus tuberosus dormant tuber and Cichorium intybus root explants in vitro

|                       |                               | Helianthus tuberosus           |                |                              |                          | Cichorium intybus            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|-----------------------|-------------------------------|--------------------------------|----------------|------------------------------|--------------------------|------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Coumarins             | Concentration $(M)$           | Dry weight (mg)                | Dry wt.<br>(%) | Dry wt.<br>of control<br>(%) | Fresh wt. of control (%) | Dry wt.<br>(mg)              | Dry wt.<br>(%) | Dry wt.<br>of control<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fresh wt of control (%) |
| CM                    | 0                             | 146 ± 2                        | 11.4           | 100                          | 100                      | 358 ± 9                      | 13.9           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| CM                    | $2 \times 10^{-4}$            | 154 ± 2ª                       | 9.9            | 105                          | 121                      | $371 \pm 22$                 | 11.7           | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123                     |
| CM                    | 5×10-4                        | $144 \pm 2$                    | 12.0           | 98                           | 92                       | $332 \pm 14$                 | 10.6           | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120                     |
| CM                    | 10-3                          | $110 \pm 1^{s}$                | 15.0           | 75                           | 56                       | $262 \pm 6^{a}$              | 10.2           | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99                      |
| 3 CH <sub>3</sub> -CM | 0                             | 147                            | 10.7           | 100                          | 100                      | 295                          | 11.1           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 3 CH <sub>3</sub> -CM | $2 \times 10^{-4}$            | 134                            | 14.6           | 91                           | 67                       |                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 3 CH <sub>3</sub> -CM | $3 \times 10^{-4}$            |                                |                |                              |                          | 276                          | 10.7           | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97                      |
| 3 CH <sub>3</sub> -CM | $5 \times 10^{-4}$            | 127                            | 15.7           | 86                           | 59                       |                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 3 CH <sub>3</sub> -CM | $7 \times 10^{-4}$            |                                |                |                              |                          | 262                          | 11.6           | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85                      |
| 3 CH <sub>3</sub> -CM | 10-3                          | 115                            | 16.2           | 78                           | 52                       | 233                          | 11.9           | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73                      |
| з он-см               | 0                             | $155 \pm 2$                    | 11.2           | 100                          | 100                      | 406                          | 15.3           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 3 OH-CM               | 10-4                          | T -                            |                | 200                          |                          | 338                          | 15.9           | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                      |
| 3 OH-CM               | $2 \times 10^{-4}$            | $147 + 2^{a}$                  | 11.8           | 95                           | 91                       |                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 3 OH-CM               | 5×10-4                        | $135 + 2^{\circ}$              | 11.9           | 87                           | 82                       | 353                          | 15.3           | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87                      |
| 3 OH-CM               | 10-3                          | 129 ± 2ª                       | 14.9           | 83                           | 64                       | 334                          | 14.9           | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                      |
| з соон-см             | 0                             | $\frac{-}{166 + 5}$            | 12.8           | 100                          | 100                      | $344 \pm 11$                 | 12.2           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 3 COOH-CM             | 2×10-4                        | $164 \pm 3$                    | 18.2           | 99                           | 69                       | 261 ± 43°                    | 12.8           | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73                      |
| 3 COOH-CM             | 5×10 <sup>-4</sup>            | $154 \pm 3$                    | 18.2           | 93                           | 65                       | 266 ± 12*                    | 11.4           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82                      |
| 3 COOH-CM             | 10 <sup>-3</sup>              | 109 ± 4°                       | 16.4           | 66                           | 51                       |                              | _              | distribution of the state of th | _                       |
| 4 OH-CM               | 0                             | 199 + 5                        | 15.5           | 100                          | 100                      | 306                          | 13.0           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 4 OH-CM               | 10-4                          | $170 + 8^{2}$                  | 21.2           | 85                           | 62                       | 301                          | 13.8           | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94                      |
| 4 OH-CM               | 5×10-4                        | $119 + 12^{a}$                 | 18.1           | 60                           | 51                       | 252                          | 13.0           | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82                      |
| 6 Cl-CM               | 0                             | 199 ± 5                        | 15.5           | 100                          | 100                      | 250 ± 7                      | 11.1           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 6 Cl-CM               | 10-4                          | 154 + 8*                       | 21.3           | 77                           | 56                       | 270 + 84                     | 11.0           | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109                     |
| 6 Cl-CM               | 5×10 <sup>-4</sup>            | 103 ± 10°                      | 19.1           | 52                           | 47                       | 192 ± 6°                     | 10.2           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83                      |
| 6 Cl-CM               | 10 <sup>-3</sup>              | 73 ± 10°                       | 13.4           | 37                           | 42                       | 212 ± 6°                     | 10.2           | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                      |
| 6 NH <sub>2</sub> -CM | 0                             | 161                            | 12.5           | 100                          | 100                      | $355 \pm 14$                 | 12.4           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 6 NH <sub>2</sub> -CM | 2×10 <sup>-4</sup>            | 157                            | 12.0           | 98                           | 101                      | $397 \pm 14$                 | 11.6           | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119                     |
| 6 NH <sub>2</sub> -CM | $5\times10^{-4}$              | 154                            | 12.7           | 96<br>96                     | 94                       | $361 \pm 19$                 | 11.4           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                     |
| 6 NH <sub>2</sub> -CM | $\frac{3 \times 10}{10^{-3}}$ | 146                            | 12.3           | 91                           | 92                       | $342 \pm 11$                 | 11.8           | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99                      |
| 6,7 OH-CM             | 0                             | 233 ± 23                       | 13.3           | 100                          | 100                      | 291 + 19                     | 11.3           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 6,7 OH-CM             | 10-4                          | $233 \pm 23$<br>$231 \pm 15$   | 15.8           | 99                           | 83                       | $291 \pm 19$<br>$290 \pm 13$ | 11.4           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98                      |
| 6,7 OH-CM             | $5 \times 10^{-4}$            | $\frac{231 \pm 13}{238 \pm 9}$ | 15.8           | 102                          | 89                       | $290 \pm 13$<br>$294 \pm 20$ | 11.4           | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                     |
| 6,7 OH-CM             | 3 ∧ 10<br>10−8                | $250 \pm 3$                    | 14.6           | 107                          | 97                       | $321 \pm 18$                 | 12.0           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104                     |

Control of Helianthus tuberosus = nutritive medium + IAA  $2 \times 10^{-8}M$ . Control of Cichorium intybus = nutritive medium without IAA. Average values  $\pm$  SE were made on about 20 explants of 20 days old. The difference of each average with its control is significant at least at 5% (Student's t-test). 4 OH-CM  $10^{-8}M$  does not allow the gelification of medium. 3 COOH-CM  $10^{-8}M$  makes the gelification of medium difficult.

Table II. Effect of different coumarins (CM) on bud neoformation in Cichorium intybus root explants in vitro

| Coumarins             | $\begin{array}{c} \text{Concentration} \\ (M) \end{array}$ | No. of neoformed buds           | No. of buds | Max. height of leaves (mm)      | Max height of leaves (%) |
|-----------------------|------------------------------------------------------------|---------------------------------|-------------|---------------------------------|--------------------------|
| СМ                    | 0                                                          | 4.8 ± 0.5                       | 100         | 20.0 ± 6.2                      | 100                      |
| CM                    | $2 \times 10^{-4}$                                         | $3.0 \pm 0.7$                   | 63          | $10.7 \pm 2.4$                  | 54                       |
| CM<br>CM              | $5 \times 10^{-4}$ $10^{-3}$                               | $2.9 \pm 0.7$ ° $1.3 \pm 0.8$ ° | 60<br>27    | $6.1 \pm 1.5$ ° $3.3 \pm 0.6$ ° | 31<br>17                 |
| 3 CH <sub>2</sub> -CM | 0                                                          | 12.5 + 0.8                      | 100         | 15.5                            | 100                      |
| 3 CH <sub>3</sub> -CM | $3 \times 10^{-4}$                                         | $13.5 \pm 0.6$                  | 108         | 13.3                            | 86                       |
| 3 CH <sub>3</sub> -CM | $7 \times 10^{-4}$                                         | $11.6 \pm 0.6$                  | 94          | 11.8*                           | 76                       |
| 3 CH <sub>3</sub> -CM | 10-3                                                       | $9.2 \pm 0.6$ °                 | 74          | 9.34                            | 60                       |
| 3 OH-CM               | 0                                                          | $13.9\pm0.8$                    | 100         | 12.2                            | 100                      |
| 3 OH-CM               | 10-4                                                       | $12.0 \pm 0.7$                  | 86          | 10.5                            | 86                       |
| 3 OH-CM               | $5 \times 10^{-4}$                                         | $12.6 \pm 0.8$                  | 90          | 10.2ª                           | 84                       |
| 3 OH-CM               | 10 <sup>-3</sup>                                           | $12.2 \pm 0.6$                  | 88          | 9,9*                            | 81                       |
| 3 COOH-CM             | 0                                                          | 6.1 + 0.9                       | 100         | $38.4 \pm 6.2$                  | 100                      |
| 3 COOH-CM             | $2 \times 10^{-4}$                                         | 6.5 + 0.9                       | 106         | $37.2 \pm 3.4$                  | 96                       |
| 3 COOH-CM             | $5 \times 10^{-4}$                                         | $6.5 \pm 0.8$                   | 106         | $33.9 \pm 3.7$                  | 88                       |
| 4 OH-CM               | 0                                                          | 8.2 + 0.6                       | 100         |                                 | _                        |
| 4 OH-CM               | 10-4                                                       | $8.4 \pm 0.8$                   | 102         | _                               | _                        |
| 4 OH-CM               | $5 \times 10^{-4}$                                         | 6.7 ± 0.5°                      | 82          | <del></del>                     | _                        |
| 6 Cl-CM               | 0                                                          | $10.5 \pm 0.5$                  | 100         | _                               | _                        |
| 6 Cl-CM               | 10-4                                                       | $10.5 \pm 0.6$                  | 100         | _                               | _                        |
| 6 Cl-CM               | $5 \times 10^{-4}$                                         | $8.6 \pm 0.5$ *                 | 82          | _                               | _                        |
| 6 Cl-CM               | 10-3                                                       | $8.2\stackrel{-}{\pm}0.6$ a     | 78          | <del>-</del>                    |                          |
| 6 NH <sub>2</sub> -CM | 0                                                          | 4.1 + 0.6                       | 100         | 39.4 + 3.8                      | 100                      |
| 6 NH <sub>2</sub> -CM | $2 \times 10^{-4}$                                         | 3.7 + 0.8*                      | 90          | $40.5 \pm 5.3$                  | 103                      |
| 6 NH <sub>2</sub> -CM | $5 \times 10^{-4}$                                         | 5.0 + 0.7                       | 121         | 40.2 + 4.2                      | 102                      |
| 6 NH <sub>2</sub> -CM | 10-3                                                       | $4.8 \pm 0.8$                   | 117         | $36.1 \pm 5.1$                  | 92                       |
| 6,7 OH-CM             | 0                                                          | 8.4 + 1.0                       | 100         | $48.1 \pm 3.9$                  | 100                      |
| 6.7 OH-CM             | 10-4                                                       | 10.2 + 1.1                      | 121         | $53.5 \pm 3.3$                  | 112                      |
| 6,7 OH-CM             | 5×10 <sup>-4</sup>                                         | $6.0 \pm 0.8$                   | 71          | 41.9 + 4.3                      | 87                       |
| 6,7 OH-CM             | 10-3                                                       | $7.4 \pm 0.8$                   | 88          | 35.8 + 3.4°                     | 74.                      |

Average values  $\pm$  SE were made on about 15 explants of 20 days old. The difference of each average with its control is significant at least at 5% (Student's *t*-test), 4 OH-CM  $10^{-3}M$  does not allow the gelification of medium. 3 COOH-CM  $10^{-3}M$  makes the gelification of medium difficult.

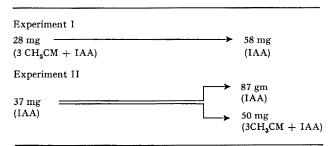
parenchyma of H. tuberosus tubers were placed in vitro in a nutritive medium 10 with glucose 4%, indol-3-acetic acid (IAA)  $2 \times 10^{-6}M$  and purified agar 1% (Fluka). The cultures were randomized in a culture room at 24°C in alternating light (1,800 lux) or in the dark. The coumarins, used at concentrations between 0.1 mM and 1 mM, were: parent compound (CM), 3-methylcoumarin (CH3-CM), 3hydroxycoumarin (3OH-CM), coumarin-3-carboxylic acid (3 COOH-CM), 4-hydroxycoumarin (4 OH-CM), 6-chlorocoumarin (6 Cl-CM), 6-aminocoumarin (6 NH2-CM) and 6,7-dihydroxycoumarin (esculetin) (6,7 OH-CM). The purity of these compounds was verified by means of paper chromatography 11, 12. Chlorophyll extraction and determination in chicory was made according to SMITH and Benitez 13. The experiments were repeated at least twice at different times with similar results.

Results and discussion. The results show (Tables I and II), on the whole, that the coumarins studied, among 0.1 and 1 mM concentrations, exert generally an inhibition either on natural cellular proliferation and organogenesis of Cichorium intybus, or on cellular proliferation induced by IAA in explants of Helianthus tuberosus dormant tubers. Only coumarin on H. tuberosus, and 6-chlorocoumarin on C. intybus respectively at 0.2 or 0.1 mM conc., showed a very weak growth effect. Only this datum on coumarin agrees with the results of Duplessy-Graillot, which are hardly comparable with ours.

The range level of such inhibitions changes according to plant tested, to the coumarin used, to its concentrations and sometimes to the conditions of light or dark. An example of complete inhibition was shown by 6 Cl-CM at mM concentration which completely blocked the stimulation of H. tuberosus by IAA: the explants are equal to a control without IAA. There are never necrosis and the vitality of inhibited explants was also shown by an evident synthesis of chlorophyll, even though reduced, in respect to the control, at the most of 50%.

Besides it was possible to demonstrate that a coumarin derivative exercises a reversible inhibition of growth and that it can also inhibit a tissue, previously stimulated by IAA, very strongly. For this purpose 2 sorts of contemporaneous experiments were carried out (Table III).

Bud formation is generally inhibited in *C. intybus* explants by coumarins, either as average of bud number for explant, or as height of leaves (Table II). The bud inhibition was maintained also 36 days after the beginning of the experiment.


<sup>&</sup>lt;sup>10</sup> В. К. Тripathi, С. r. Acad. Sci., Paris 266, 1123 (1968).

<sup>&</sup>lt;sup>11</sup> K. RIEDL and L. NEUGEBAUER, Monatsh. Chem. 83, 1083 (1952).

<sup>&</sup>lt;sup>12</sup> J. GRUJIC-VASIC, Monatsh. Chem. 92, 236 (1961).

<sup>&</sup>lt;sup>13</sup> J. H. C. Smith and A. Benitez, in Modern Methods of Plant Analysis (Ed. K. Peach and M. V. Tracey; Springer-Verlag, Heidelberg 1955), vol. 4, p. 142.

Table III. Control of 3-methylcoumarin inhibition on Helianthus tuberosus dormant tuber explants in vitro



Each datum is dry weight average (mg) of 20 explants grown first for 21 days and after another 26 days. Concentrations are:  $3\text{CH}_3\text{CM}$   $10^{-8}M$  and IAA  $2\times10^{-8}M$ .

Table IV. 3-hydroxycoumarin effect on root neoformation in Cichorium intybus explants in vitro

| 3 OH-CM (M)        | No. neoformed roots | No. roots<br>(%) |
|--------------------|---------------------|------------------|
| 0                  | $7.1 \pm 0.7$       | 100              |
| $10^{-4}$          | 5.1 ± 0.4°          | 72               |
| $5 \times 10^{-4}$ | $5.4 \pm 0.6^{a}$   | 76               |
| 10-3               | $0.5 \pm 0.1^{a}$   | 7                |

Average values  $\pm$  SE were made on 28 explants, 25 days old, growing in continuous light. \* The difference of each average with its control is significant at least at 5% Student's *t*-test.

Root neoformation in chicory is inhibited (more than 90%) particularly by mM 3 OH-CM (Table IV). Also 3 CH<sub>3</sub>-CM causes a similar effect. The rhyzogenetic activity also of *H. tuberosus* explants was verified according to TRIPATHI <sup>10</sup> and TRIPATHI and GAUTHERET <sup>14</sup>. Unfortunately our explants were not able to form roots on TRIPATHI medium probably because this phenomenon is related to variety.

Two parallel experiments were made in alternating light or in the dark, with 3 CH<sub>3</sub>-CM and 4 OH-CM, at concentrations between 0.1 and 1 mM, on C. intybus and H. tuberosus. The data show, referred to the controls, no significant differences of growth except for C. intybus cultivated on 3 CH<sub>3</sub>-CM in the dark, which is more inhibited. 3 CH<sub>3</sub>-CM shows a greater effect on bud formation in the dark than in the light, while 4 OH-CM exerts the same effect in both cases. However, the number of buds formed by explants grown on the same coumarin concentrations, was constantly lower in those grown in the dark (about 33%).

The results were also examined to discover a possible relationship between the type and position of substituting radicals in the molecule and its action. The coumarin (CM) generally inhibits the callogenesis to the same degree as 3 CH $_3$ -CM and the organogenesis more than the other coumarins essayed. The methyl substitution in position 3 has a greater inhibitory effect, at mM concentrations, than hydroxylation and carboxylation in the same position on bud formation in C. intybus. The hydroxy-groups in position 3 and 4 cause a similar effect on chicory, while the 4 OH-CM exerts a greater inhibition on H. tuberosus. The substitution in position 6 with amino or 6,7 with hydroxy-groups has very little effect on callogenesis of H. tuberosus and C. intybus, while 6-chloro-group substituted coumarin is more inhibiting.

Probably the plants do not metabolize coumarins simply. by detaching the radicals: in fact the effects of various derivatives are often very different from those of parent compound. Generally H. tuberosus appears to be more sensitive than C. intybus to coumarin action, especially expressed as fresh weight. Besides chicory does not show significant variations of dry weight percentage. It is known that the IAA activation of dormant tissues as H. tuberosus raises its hydration. In such explants, treated with increasing coumarin concentrations, the dry weight percentage generally grows parallel. This fact could indicate that, in addition to the inhibitory effect on callogenesis, these compounds, at suitable concentrations, probably exercise some inhibition also on extention growth as confirmed by numerous authors 2, 4-6, perhaps modifying the cellular permeability 15.

In conclusion, the inhibitory effect on growth and organogenesis of coumarins essayed are obviously different according to the tissues utilized, but overall they are dependent on position and type of substituting radicals <sup>16</sup>.

Riassunto. La cumarina ed alcuni suoi derivati (3 metil-, 3 idrossi-, 3 carbossi-, 4 idrossi-, 6 amino-, 6 cloro- e 6,7 diidrossi-cumarina), specialmente alla concentrazione mM, hanno effetto inibitorio sia sulla callogenesi di tuberi di Helianthis tuberosus che sulla organogenesi (neoformazione di gemme e radici) e callogenesi di radici di Cichorium intybus coltivati in vitro. Il grado di inibizione dipende dal tipo di radicale sostituente della cumarina e dalla pianta utilizzata come test.

N. Bagni and D. Serafini Fracassini

Istituto Botanico dell'Università di Bologna, Via Irnerio 42, I-40126 Bologna (Italy), 10 March 1971.

## Antimicrobial Activity of Cyclacillin against Escherichia coli in vivo and in vitro

Cyclacillin [6-(1-aminocyclohexanecarboxamido)penicillanic acid] is a semisynthetic penicillin with a wide antibacterial spectrum; it resembles ampicillin in being effective against a wide range of gram-positive and gram-negative pathogens, but, unlike ampicillin, is also effective against the penicillinase-producing staphylococci 1-3.

However, in laboratory experiments in which cyclacillin was tested against a number of gram-positive and gram-negative pathogens, an inconsistency was encountered between the in vivo and in vitro susceptibility<sup>4</sup>. In vitro, cyclacillin was less active than ampicillin against both gram-negative and gram-positive bacteria, while in vivo,

<sup>&</sup>lt;sup>14</sup> B. K. TRIPATHI and R. J. GAUTHERET, C. r. Acad. Sci., Paris 268, 523 (1969).

<sup>15</sup> H. V. GUTTENBERG and G. MEINL, Planta 43, 571 (1954).

<sup>16</sup> The authors wish to thank Dr. O. MARTINELLI for technical assistance.